A Multifractal Dynamical Model of Human Gait
نویسنده
چکیده
Walking is regulated through the motorcontrol system (MCS). The MCS consists of a network of neurons from the central nervous system (CNS) and the intraspinal nervous system (INS), which is capable of producing a syncopated output. The coupling of the latter two systems produces a complex stride interval time series that is characterized by fractal and multifractal properties that depend upon several biological and stress constraints. It has been shown that: (i) the gait phenomenon is essentially a rhythmic cycle that obeys particular phase symmetries in the synchronized movement of the limbs; (ii) the fractal and multifractal nature of the stride interval fluctuations become slightly more pronounced under faster or slower paced frequencies relative to the normal paced frequency of a subject; (iii) the randomness of the fluctuations increases if subjects are asked to synchronize their gait with the frequency of a metronome or if the subjects are elderly or suffering from neurodegenerative disease. Here we present a new model, called the super central pattern generator, able to reproduce these known properties of walking and discuss the physiological and psychological interpretations of the model parameters.
منابع مشابه
A nonlinear dynamical model of human gait
We present a nonlinear stochastic model of the human gait control system in a variety of gait regimes. The stride interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations become more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when...
متن کاملUnderstanding the complexity of human gait dynamics.
Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegener...
متن کاملNonlinear dynamical model of human gait.
We present a nonlinear dynamical model of the human gait control system in a variety of gait regimes. The stride-interval time series in normal human gait is characterized by slightly multifractal fluctuations. The fractal nature of the fluctuations becomes more pronounced under both an increase and decrease in the average gait. Moreover, the long-range memory in these fluctuations is lost when...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کاملA Stochastic Model of Human Gait Dynamics
We present a stochastic model of gait rhythm dynamics, based on transitions between di'erent “neural centers”, that reproduces distinctive statistical properties of normal human walking. By tuning one model parameter, the transition (hopping) range, the model can describe alterations in gait dynamics from childhood to adulthood—including a decrease in the correlation and volatility exponents wi...
متن کامل